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ABSTRACT

Intelligent Machines. like Intelligent Robots are capable of performing autonomously in

uncertain environments, and have imposed new design requirements for modern engineers.

:: New concepts, drawn from areas like Artificial Intelligence. Operations Research and Control

Theory, are required in order to implement anthropomorphic tasks with minimum intervention

of an operator. This work deals with the analytic formulation the Principle of Increasing

= Precision with Decreasing Intelligence: the fundamental principle of Hierarchically Intelligent
Control. A three level structure representing the Organization. Coordination and Execution

j has been developed as a probabilistic model of such a system and the approaches necessary

to implement each one of them on an intelligent machine are discussed. The Principle is

derived also from a probabilistic model and can be expressed in terms of entropies. It is

compatible with the current formulation of the Hierarchically Intelligent Control problem, the

mathematical programming solution of which minimizes the total Entropy. The derivation

and design of parallel architectures for Artificial Intelligence. like the Boltzmann machine is
obtained from such formulation.

1. INTRODUCTION

In our present technological society, there is a major need to build machines that would

execute intelligent tasks operating in uncertain environments with minimum interaction with

a human operator. Although some designers have built smart robots, utilizing heuristic ideas.

there is no systematic approach to design such machines in an engineering manner.

Recently. cross-disciplinary research from the fields of computers, systems. AI and in-

formation theory has served to set the foundations of the emerging area of the Design of

Intelligent Machines (Saridis. Stephanou 1977).

Since 1977 Saridis has been developing a novel approach, defined as Hierarchical In-

telligent Control. designed to organize, coordinate and execute anthropomorphic tasks by a

machine with minimum interaction with a human operator. This approach utilizes analytical

(probabilistic) models to describe and control the various functions of the Intelligent Ma-

chine structured by the intuitively defined principle of Increasing Precision with Decreasing

Intelligence (IPDI) (Saridis 1979).
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This principle, even though resembles the managerial structure of organizational systems

(Levis 1988). has never been established on a scientific basis. Since there is no such reference
in the existing literature and its concept represents new ideas not found in the main stream of

thoughts of the investigators in the area, this principle needs to be researched and if possible

an analytic explanation should be obtained to be consistent with the development of the theory

of Hierarchica!ly Intelligent Control.

The impact of such an investigation will be in the en¢ineering design of intelligent robots.

since it will provide analytic techniques for universal production (blueprints) of such machines.

In order to accomplish this. some mathematical theory of the intelligent machines will be
first outlined. Then some definitions of the variables associated with the principle, like machine

intelligence, machine knowledge, and precision will be made. A list of such definitions is given

in the section that follows. (Saridis. Valavanis 1988). Then an analytic procedure to establish

the principle on a scientific basis is hereby developed.

2. THE MATHEMATICAL THEORY OF INTELLIGENT CONTROLS

In order to design intelligent machines that require for their operation control system

with intelligent functions such as simultaneous utilization of a memory, learning, or multilevel

decision making in response to "fuzzy" or qualitative commands. Intelligent Controls have

been developed by Saridis (1977. 1983). They utilize the results of cognitive systems researi:h

effectively with various mathematical programming control techniques (Birk & Kelley. 1981).

Cognitive systems have been traditionally developed as part of the field of artificial intel-
ligence to implement, on a computer, functions similar to one encountered in human behavior

(Albus 1975. Minsky 1972. Winston 1977. Nilsson 1969. Pao 1986). Such functions as speech
recognition and analysis, image and scene analysis, data base organization and dissemination.

learning and high-level decision making, have been based on methodologies emanating from

a simple logic operation to advances reasoning as in pattern recognition, linguistic and fuzzy
set theory approaches. The results have been well documented in the literature.

Various pattern recognition, linguistic or even heuristic methods have been used to an-

alyze and classify speech, images or other information coming in through sensory devices

as part of the cognitive system (Birk & Kelley 1981). Decision making and motion control
were performed by a dedicated digital computer using either kinematic methods, like tra-

jectory tracking, or dynamic methods based on compliance, dynamic programming or even

approximately optimal control (Saridis and Lee 1979).

The theory of Intelligent Control systems, proposed by Saridis (1979) combines the pow-

erful high-level decision making of the digital computer with advanced mathematical modeling

and synthesis techniques of system theory with linguistic methods of dealing with imprecise

or incomplete information, This produces a unified approach suitable for the engineering needs

of the future. The theory may be thought of as the result of the intersection of the three major

disciplines of Artificial Intelligence. Operal;ions Research and Control Theory. This research

is aimed to establish Intelligent Controls as an engineering discipline, and it plays a central

role in the design of Intelligent Autonomous Systems.

Intelligent control can be considered as a fusion between the mathematical and linguisti-

cal methods and algorithms applied to systems and processes. In order to solve the modern

2
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technological problems that require control systems with intelligent functions such as simul-

taneous utilization of a memory, learning, or multilevel decision making in response to "fuzzy"
or qualitative commands. Intelligent Control is the process of implementation of an Intel-

ligent Machine and would require a combination of "machine intelligent functions" for task

organization purposes with system theoretic methods for their execution.

The control intelligence is hierarchically distributed according to the Principle of IncreasinF

Precision with Decreasing Intelligenc_ (IPDI). evident in all hierarchical management systems.

They are composed of three basic levels of controls even though each level may contain more

than one layer of tree-structured functions (Figure 1):

1. The organization level.
2. The coordination level.

3. The execution level.

The Qrganization Level is intended to perform such operations as planning and high level

decision making from lone term memoriCSc. It may require high level information processing

such as the knowledge based systems encountered in Artificial Intelligence. These require
large quantities of knowledge processing but require little or no precision.

The functions involved in the upper levels of an intelligent machine are imitating functions

of human behavior and may be treated as elements of knowledg.e-based svstcmT. Actually. the

activities of planning, decision making, learning, data storage and retrieval, task coordination.

etc. may be thought of as knowledge handling and management. Therefore. the flow of

knowledge in an intelligent machine may be considered as the key variable of such a system.

Knowlcdze flow in an intelligent machine's organization level represents respectively (Fig-
ure 2):

1. Data Handling and Management.

2. Planning and Decision performed by the central processing units.

3. Sensing and Data Acquisition obtained through peripheral devices.

4. Formal Languages which define the software.

Subjective probabilistic models or fuzzy sets are assigned to the individual functions.

Thus. their entrooies may be evaluated for every task executed. This provides an analytical

measure of the total activity.

Artificial Intelligence methods also applicable for the processing of knowledge and knowl-

edge rates of the organization level of an intelligent machine have been developed by Meystel

(1985) and his colleagues.

The Coordinatiorl Level is an intermediate structure serving as an interface between the

organization and execution level (Figure 3).

it is involved with coordination, decision making and learning on a short term memory.

e.g.. a buffer. It may utilize linguistic decision schemata with learning capabilities defined in

Saridis and Graham (1984). and assign subjective probabilities for each action. The respective

entropies may be obtained directly from these subjective probabilities.

The Execution Level executes the appropriate control functions. Its performance measure

can also be expressed as an entropy, thus unifying the functions of an "intelligent machine".

3
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Optimal control theory utilizes a non-negative functional of the states of a system in

the states space, and a specific control from the set of all admissible controls.to define the

performance measure for some initial conditions (z(t),t), representing a generalized energy

function• Minimization of the energy functional yields the desired control law for the system.

For an appropriate density function p(z,u(z,t),t) satisfying Jaynes' Maximum entropy

principle (1957), it was shown by Saridis (1988) that the entropy for a particular control action

f

=/_ p(z, u(z,t),t)lnp(z, u(t),t)dz
Jti I

is equivalent to the expected energy or cost functional of the system. Therefore. minimization

of the entropy H(u) yields the optimal control law of the systems.

This statement establishes equivalent measures between information theoretic and op-

timal control problems and unifies both information and feedback control theories with a

common measure of performance. Entropy satisfies the additive property, and any system

composed of a combination of such subsystems can be optimized by minimizing its total

entropy. Information theoretic methods based on entropy may apply (Conant 1976).

Since all levels of a hierarchical intelligent control can be measured by entropies and theJr
rates, then the optimal operation of an mtelhgent machine" can be obtained through the

solution of mathematical programming problems.

An important development of this theory is a structure of the "nested hierarchical" sys-

tems (Meystel. 1985). Even when the hierarchy is not tree-like, still using hierarchy is bene-

ficial since the hierarchy of resolutions (errors per level) helps to increase the effectiveness of

the system under limited computing power which is important to mobile systems.

The various aspects of the theory of hierarchically intelligent controls may be summarized
as follows:

The theory of intelligent machines may be po_tulal;e4 .as the mathematical problem of

findinR the right seauence of decisions and controls for a swtem structured according tQ

the vrinciole of increasinlz arecision with decreasinE intelligence (constraint) such that it

minimizes its total entropy.

The above analytic formulation of the "intelligent machine problem" as a hierarchically

intelligent control problem is based on the use of entropy as a measure of performance at all

the levels of the hierarchy. It has many advantages because of the tree-like structure of the

decision making process, and brings together functions that belong to a variety of disciplines.

The complete development of this theory and its integration with the other theoretical issues

of the Intelligent Autonomous System is the main task of this paper.

3. KNOWLEDGE FLOW AND THE PRINCIPLE OF IPDI

The concept of entropy used in this paper may be generalized if one introduces theory

of evidence for the cases that Intelligent Machines are endowed with judgment, a very human

property.

4
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What remains to investigate about the general concepts of Intelligent Control Systems are

the fundamental notions of Machine Intelligence, Machine Knowledge. its Rate and Precision.

The following definitions are useful in order to derive the principle of IPDI.

Def,] Machine Knowledge is defined to be the structured information

acquired and applied to remove ignorance or uncertainty about a specific task

pertaining to the Intelligent Machine.

Knowledge is a cumulative quantity accrued by the machine and cannot be used as a variable

to execute a task. Instead, the Rate of Machine Knowledge is a suitable variable.

Def. 2 Rate of Mach;ne Knowledge is the flow of knowledge through
an Intelligent Machine.

Intelligence is defined by the American Heritage Dictionary of the English Language (1969)
as: Intelliscence is the capacity to acquire and apply knowledge.

In terms of Machine Intelligence. this definition may be modified to yield:

Def...____33Machine Intelligence (MI) is the variable (source) which operates

on a data-base (DB) of events to produce flow of knowledge (RK)

One may directly apply the Law of Partition of Information Rates of Conant (1976] to
analyze the functions of intelligence within the activities of an Intelligent Control System.

On the other hand, one may define Precision as follows:

and

Oef, 4 Imprecision is the uncertainty of execution of the various tasks

of the Intelligent Machine.

Def. 5 Precision is the complement of Imprecision, and represents the

complexity of a process.

Analytically. the above relations may be summarized as follows:

Knowledge (K) representing a type of information may be represented as

K = -a - lnp(K) = (Energy) (1)

where p(K) is the probability density of Knowledge.

From equation (1) the probability density function p(K) satisfies the following expression

in agreement with Jaynes' principle of Maximum Entropy (1957):

= = e-Kd p(K) (2)

The Rate of Knowledge R which is the main variable of an intelligent machine with discrete
states is

K

R = _- = (Power)
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It was intuitively thought (Saridis 1983). that the Rate of Knowledge must satisfy the fol-

lowing relation which may be thought of expressing the principle of Increasing Precision
with Decreas.i.n_ Intelligence

(MI) : (DB) ---, (R) (3)

A special casewith obvious interpretation is, when R is fixed, machine intelligence is largest

for a smaller data base e.g. complexity of the process. This is in agreement with Vamos'

theory of Metalanguages (1986).

It is interesting to notice the resemblance of this entropy formulation of the Intelligent

Control Problem with the c-entropy formulation of the metric theory of complexity originated

by Kolomogorov (1956) and applied to system theory by Zames (1979). Both methods imply

that an increase in Knowledge (feedback) reduces the amount of entropy (e-entropy) which
measures the uncertainty involved with the system.

An analytic formulation of the above principle derived from simple probabilistic relation

among the Rate of Knowledge, Machine Intelligence and the Data Base of Knowledge, is

presented in the next section. The entropies of the various functions come naturally into the
picture as a measure of their activities.

4. THE ANALYTIC FORMULATION OF THE IPDI

in order to formulate mathematically the concepts of knowledge-based systems, one must

consider the state space of knowledge i'l, with states ss,i = 1, 2,... n. They represent the

state of events at the nodes of a network defining the stages of a task to be executed.

Then knowledge between two states is considered as the association of the state 8s with

another state 8j and is expressed as

1

Ksj= (4)

where tusj are state transition coefficients, which are zero in case of inactive transmission.

Knowledge at the state 8s is the association of that state with all the other active states

sj and is expressed as
1

Ks= wsis, (5)
i

Finally, the total knowledge of a system is considered as

and has the form of energy of the underlying events. The rate (flow) of knowledge is the

derivative of knowledge and for the discrete state space _/, is defined respectively

Ks1 Rk = Ks R = K= --T- ' , (7)

6
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where T is a fixed time interval.

Since knowledge was defined as structured information, it can be expressed by a proba-

bilistic relation similar to the one given by Shannon. and expressed for each level by equation

(1):

Inp(K,) = -a- K, (8)

which yields a probability distribution satisfying Jaynes' Principle of Maximum Entropy (for
E(K}=G)

p(g,) = e -_''-K' e"' = _ e -K'

The rate of knowledge is also related probabilistically by considering that/f'_ = R_T.

p(R_) = p(R_T) = e -a'-TR' = e -''-_''R' (9)

The principle of Increasing Precision with Decreasing Intelligence is expressed probabilis-
tically by

PR(MI, DB) = PR(R) (10)

where MI is the machine intelligence and DB is the data base associated with the task to be

executed and represents the complexity of the task which is also proportional to the precision

of execution. The following relation produces

P(MI, DB) = P(R)

P (MI/DB) P(DB) = P(R)

Inp(MI/DB) + lnp(DB) = lnp(R) (11)

Taking the expected value on both sides

H (MI/DB) + H(DB) = H(R) (12)

where H(z) is the entropy associated with z. For a constant rate of knowledge which is

expected during the conception and execution of a task increase of the entropy of DB requires
a decrease of the entropy of MI for the particular data base. which manifests the IPDI. If

MI is independent of DB then

H(MI) + H(DB) = H(R) (13)

In the case that p(MI) and p(DB) satisfy Jaynes' principle as p(R) does

p (MI/DB) = e -a2-_'2Mso"

p(DB) = e -a'-"'DB (14)

where _ and/_,i = 2, 3 are appropriate constants.

Then the entropies are rewritten as

7
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and if

then

-a2 - p2MIDB - _s - #3DB = -_z - pzR

P2 /_3

Pz Pz

(15)

"Y2MIDB + "y3DB = R (16)

which represents a specific but more explicit version of the Principle of Increasing Precision

with Decreasing Intelligence.

This Principle is applicable both across one level of the Intelligent Hierarchy as well as

throughout the levels of the Hierarchy. in which case the flow R represents the throughput of

the system in an information theoretic manner. The partition law of information rate applies
naturally to such a system.

The entropy of DB may be related to _'-entropy as follows: A system requiring certain

(n) level of precision takes n-times the data base DB required for a simple precision. But

H(nDB) = E{Inn} + E{InDB} (17)

where E{lnn} is the e-entropy associated with the complexity of execution. A case study

demonstrating the validity of the above is given in Saridis and Valavanis (1988).

5. A CASE STUDY: THE DERIVATION OF THE BOLTZMANN MACHINE

In the current literature of parallel architectures for Artificial Intelligence. the Boltzmann

machine represents a powerful architecture that allows emcient searches to optimally obtain

the combination of certain hypotheses of input data and constraints (Fahlman. Hinton. Se-

jnowski 1985).

The Boltzmann architecture may be interpreted as the machine that searches for the

optimal interconnection of several nodes representing different primitive events in order to

produce a string defining an optimal task. Such a device may prove extremely useful for the

design of the upper levels of an intelligent machine (Saridis and Valavanis 1988).

Associating each independent event with a binary random variable z_({0, 1}. with apriori

probabilities p(z_ = 1) = p_, p(z.: = 0) = l-p_. where i represents inclusion, and 0 represents

exclusion of the ith event from the string one defines the energy of flow of knowledge between

nodes (events) f and ] by
1

1_ i = _vqziz i (18)

with probability

where ui_" are the transfer coefficients and vi_ = 0 f = 1,... n as in eq. (4) and (7).
Using the values of the binary variables the expection in (19) yields

p(l_i) = e-"i-i'"p, pi + e-"'p,(1 - Pi) + e-_'Pi( 1 - P,) + e-_'( 1 - p,)(1 - Pi)

= e -'i [1- (1- e-½"'i)p, pi ]

(19)

(20)

8
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where

e=J = E [1 - (1 - e-½u_i)p_pj ]
i

The probability of flow at node j is given by

-- H p(R_#) (21)

Similarly, one derives.the probability of the total flow of knowledge R for a particular

sequence of events (connection of the network):

P(R)= R PCP_)= H p(_;)

The entropy associated with the above distribution is

(22)

H(R) = ¢..F E{R} (23)

may serve as the cost criterion to be minimized at the search for optimal connection of the

primitive events and where r and ¢ is a normalization constant.

This analytic derivation yields the mechanism of a Boltzmann machine as defined by

Hinton and Sejnowski (1986). The only difference is that knowledge considered as energy

is assumed here to be symmetric e.g. with no potential term. which is present in biological

systems. The above probabilities may be used to escape local minima during the search, for

the optimal string.

The search for the optimal connectiveness may be reassigned to find the interconnection

that yields minimum entropy (23).

Learning may be obtained by adjusting the coefficients v_j. and apriori probabilities after

the completion of a task for t times, by using the recursive expression

,,,iCt+ z) = ,,,,(t) + p,+_[_- ,,,jCt)];
p,(t + 1) = p,Ct)-t-pt+t [_- p,(t)]: (24)

where

and

I1 when task is successful_c= 0 when is not

1
pt+z = _ the harmonic sequence.

t-I-1

Convergence of this algorithm is guaranteed in Saridis and Graham (1984).

9
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The principle of IPDI is immediately applied to find the amount of Machine Intelligence

needed for a flow of knowledge R.

HCR ) = HCMI) + HCDB) (25)

where DB is related to the number of primitive events n. e.g. its P-entropy. and reflects the

complexity of'the system. For minimum H(R) and fixed H(DB) e.g.. number n of primitive

events, the Machine Intelligence required is also minimum.

Exampl_

Consider a system of four primitive events (nodes). represented by the directed graph

of Figure 4. where el (node 1) the root e2 (node 2) is the transitive event and es (node 3)

and e4 (node 4) are the leaves. There are four possible connections between the root and the

leaves,sincethe graphis directed(1-3). (1-2-3). (1-2-4) and (1-4). to whichthe flowsof
knowledge correspond to

Rzl = R21 = R41 = R32 = R4_ = R34 = R43 = 0

and from (20)

p(R12) = 1

1- [1- (-½,,3)]p,p3
p(R13) =

11-
p(R=) =

p(R_,) =

p(R,,) =

2 - [1 -exp (-_ul.3)] P2P3 - [1 -exp (-_v23) P2P3]

1
1- [-exp (-_v24)] P294

2 - [1 - exp (-_v].4)] p - lp - 4 - [1 - exp (- 21v24)] P2P4

1 - [1 - exp (-_v!.4)] PlP4

2 - [1 - exp (-!ul,)] P,P4 - [1 - exp (-_v24)] P2P4

The total probabilities for each of the four possible connections are

p(R13) = p(R13)

p(R12a) = p(RI2)p(R23) = p(_23)

p(R12,) = p(R,2)p(R24) = p(R24)

p(RI,) =p(R14)

Using the following values the following probabilities result

Pl =1 , P2=P3 =P4 =0.5

vL3 = 0.4 , v23 = 0.6 , v_4 = 0.2 , vl,L = 0.1

10
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P(RI3) =0.410

p(R 23) = 0.59o

P(RI24) = 0.594

P(R14) =0.406

The total entropies are

H(R_3) = 0.795 + 0.041 = 0.836

H(R123) = 0.795 + 0.0885 = 0.8835

H(Rz24) = 0.877 + 0.0594 = 0.9364

H(Rz4) = 0.877 + 0.0203 = 0.8973

The search for minimum entropy yields that the connections (1 --, 3) results in the

optimum connection of the system.

The weights v13, v2s, u24, v14 and the apriori probabilities P2, Ps and P4 may be upgraded

after a successful execution of the task using algorithm (24).

6. APPLICATION TO ROBOTIC SYSTEMS

The principle of Increasing Precision with Decreasing Intelligcpc_ has direct application

to the design of Intelligent Machines. It provides a means of structuring hierarchically the levels

of the machine. Since for a passive task the flow of knowledge through the machine must

be constant, it assigns the highest level with the highest machine intelligence and smallest

complexity (size of data base), and the lowest level with the lowest machine intelligence and

largest complexity. Such a structure agrees with the concept of most organizational structures

encountered in human societies. Application to machine structures is straight forward.

Even at the present time there is a large variety of applications for intelligent machines.

Automated material handling and assembly in an automated factory, automated inspection,

sentries in a nuclear containment are some of the areas where intelligent machines have and

will find a great use. One of the most important applications though is the unmanned space

exploration where, because of the distances involved, autonomous anthropomorphic tasks

must be executed and only general commands and reports of executions may be communicated.

Such tasks are suitable for "intelligent robots" a type of intelligent machines capable of

executing anthropomorphic tasks in unstructured uncertain environments. They are usually

designed in a human-like shape and are equipped with vision and other tactile sensors to

sense the environment, two areas to execute tasks and locomotion for appropriate mobility

in the unstructured environment. The controls of such a machine are performed according

to the theory of Intelligent Machines previously discussed. (Saridis and Stephanou. 1977).

(Saridis 1983. 1985a. 1985b). (Meystel 1985, 1986). The three levels of controls, obeying

the Principle of Increasing Precision with D e.creasin;z Intelligence. are implemented with ap-

propriately selected feedback, as shown in Figure 5. for a PUMA 600 robot arm with sensory
feedback.

11
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The Boltzmann machine architecture may be used to implement the organization level of

an intelligent robot by considering the proper interconnection of primitive events represented

by nodes and the coordination level of an intelligent robot by appropriately connecting the
various coordinators to the dispatcher for communications purposes, as in Figure 5.

Z. CONCLUSIONS

A mathematical theory for intelligent machines was proposed and traced back to its

origins. The methodology was developed to formulate the "intelligent machine", of which an

intelligent robot system is a typical example, as a mathematical programming problem as using
the aggregated entropy of the system as its performance measure. The levels of the machine

structured according to the Principle of Increasing Precision with DecreasinK Intelligencp. can

adopt performance measures easily expressed as entropies. This work establishes an analytic

formulation of the Principle, provides entropy measures for the account of the underlying
activities, and integrates it with the main theory of "Intelligent Machines". Optimal solutions

of the problem of the "intelligent machine" can be obtained by minimizing the overall entropy

of the system. The entropy formulation presents a tree-like structure for this decision problem
very appealing for real-time computational solutions.

This formulation was proved to be applicable to the derivation and design of parallel

architectures for.Artificial Intelligence. The Boltzmann machine was analytically derived from

the definitions of knowledge flow and Jaynes' principle of maximum entropy. The optimal event

(node) connection has been obtained by searching for a minimum of the entropy criterion and
the IPDI has been directly applicable.
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